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Preliminaries.

The Langlands program involves arbitrary reductive groups over “global fields”, i.e.
number fields and function fields.
In this talk a ring means a commutative unital ring, i.e. a set with commutative
operations +,×, elements 0, 1 satisfying usual axioms.
An example is the ring Z of integers.
A field is a ring where any non zero element is invertible.
An example is the field of rational numbers Q = {a/b, a, b ∈ Z, b 6= 0}.
A number field is a finite extension of Q, i.e. a field generated over Q by roots of a
polynomial with coefficients in Q.
The next 6 slides give a short introduction in the more familiar case of GLn over Q.
Then the rest of the talk will be about arbitrary reductive groups over function fields.



The case of GLn over Q : automorphic forms without level.

The vector space of automorphic forms without level for GLn over Q is

L2(L,C) where L = GLn(Z)\GLn(R).

The space L classifies the lattices in Rn, i.e. the couples (M, ι), where
I M is free Z-module of rank n,
I ι : M→ Rn is a discrete embedding of M in Rn.

Indeed if we fix a basis of M as a Z-module, i.e. an isomorphism M = Zn, ι is given by
a matrix in GLn(R) and to forget the choice of the basis of M we take the quotient by
GLn(Z).
The Hilbert space L2(L,C) is equipped with a unitary representation of GLn(R) by
right translations on L = GLn(Z)\GLn(R).



The case of GLn over Q : unramified Hecke operators.

For any prime number p and any λ = (λ1, ..., λn), where λ1, ..., λn are integers and
λ1 ≥ ... ≥ λn ≥ 0, we have the unramified Hecke operator

Tλ,p : L2(L,C)→ L2(L,C)
f 7→

[
(M, ι) 7→

∑
M′

f (M′, ι
∣∣
M′)
]

where the finite sum is taken over all sub-Z-modules M′ ⊂M such that this inclusion
is a modification at p with elementary divisors (λ1, ..., λn), and ι

∣∣
M′ is the embedding

of M′ in Rn obtained by restriction of ι to M′.
We say that an inclusion M′ ⊂M is a modification at p with elementary divisors
(λ1, ..., λn) if there exists a basis (e1, ..., en) of M over Z such that

M′ = Zpλ1e1
⊕

...
⊕

Zpλnen inside M = Ze1
⊕

...
⊕

Zen.

For example when λ = (1, 0, ..., 0) this is equivalent to M/M′ = Z/pZ.



The case of GLn over Q : automorphic forms with level.

More generally let N be a positive integer. The vector space of automorphic forms with
level N is defined by

L2(LN ,C)

where LN classifies lattices in Rn with a level structure, i.e. triples (M, ι, α) where
(M, ι) ∈ L and α : M/NM→ (Z/NZ)n is an isomorphism.
The Hilbert space L2(LN ,C) is equipped with the action of
I unramified Hecke operators Tλ,p as before, but only for p prime to N,
I a non commutative algebra of ramified Hecke operators (not defined in this talk)

for each prime number p dividing N
I GLn(R) by right translation.

Remark. The well-known holomorphic modular forms are obtained, for n = 2, as the
isotypical parts of L2(LN ,C) corresponding to the discrete series of representations of
GL2(R). For n = 1 we obtain the Dirichlet characters.



The case of GLn over Q : the goal of the Langlands program.

The unramified Hecke operators Tλ,p (for all p prime to N and for all λ) commute
with each other and we can simultaneously diagonalize them.
In the setting of the previous slide, the goal of the Langlands program is
I to decompose L2(LN ,C) as a direct sum (or rather an integral) of eigenspaces for

the Tλ,p, indexed by global Langlands parameters,
I to have a multiplicity formula for these eigenspaces, as representations of the

ramified Hecke algebras and of GLn(R) (in fact these multiplicities are well known
in the case of GLn, but not for general reductive groups and formulas were
conjectured by Arthur in general).

The global Langlands parameters are representations of rank n of the Galois group of
Q, under some algebraicity conditions on the representations of GLn(R) which appear
(these conditions have no analogue over function fields and we do not explain them for
this reason).



The case of GLn over Q : places of Q.

In general a place of a global field F is a norm (up to equivalence, with a canonical
choice in the equivalence class), and the completion of F for such a norm is called a
“local field”.
The places of Q are
I the archimedean place, where the completion is R and the archimedean norm is

the usual absolute value,
I for every prime number p, the place p where the completion is Qp and the p-adic

norm of a number r ∈ Q∗ is p−α, where r = pαa/b with a, b integers non divisible
by p, so that the bigger the power of p dividing r the smaller the p-adic norm of r .

For any p, we recall that Zp is the ring of elements of Qp of norm ≤ 1. It is also the
completion of Z for the p-adic norm, and also the projective limit lim←−n Z/p

nZ.
We have the product formula : for any element of Q∗ the product of the archimedean
norm and all p-adic norms is 1. For example, |6|R = 6, |6|Q2 = 1/2, |6|Q3 = 1/3 and
other norms are 1.



The case of GLn over Q : adeles.

We define the restricted product
∏′

p Qp as the subring of elements of
∏

p Qp which
belong to Zp for all p but finitely many.
We define the ring A of adèles of Q as the ring

∏′
p Qp × R.

Then A is a locally compact ring containing Q discretely. Indeed, by the product
formula, an element of Q∗ cannot be small in A. Moreover A/Q is compact.

An element of Q is in Z if and only if it has no denominator in p for any prime number
p, i.e. if its image in

∏′
p Qp is in

∏
p Zp.

Therefore GLn(Z) ⊂ GLn(Q) is the inverse image of GLn(
∏

p Zp) ⊂ GLn(
∏′

p Qp).

We can deduce that L = GLn(Z)\GLn(R) is equal to GLn(Q)\GLn(A)/GLn(
∏

p Zp).
More generally, for any level N,

LN = GLn(Q)\GLn(A)/KN

where KN = Ker(GLn(
∏

p Zp)→ GLn(Z/NZ)) is an open compact subgroup of finite
index in GLn(

∏
p Zp).



The general setting for the Langlands program with arbitrary reductive groups.
Let G be a reductive group over a global field F . We assume G is split to simplify.
We denote by Ĝ the Langlands dual group of G . It is the split reductive group whose
weights and roots are the coweights and coroots of G . Examples :

G Ĝ
GLn GLn
SLn PGLn

SO2n+1 Sp2n
Sp2n SO2n+1
SO2n SO2n

and if G is one of the five exceptional groups, Ĝ is of the same type.
The locally compact ring of adèles A of F contains F discretely, and the goal of the
Langlands program is to decompose L2(G(F )\G(A),C), as a representation of G(A),
in terms of global Langlands parameters, which are (under some algebraicity conditions
in the case of number fields) morphisms from the Galois group of F to Ĝ .
From now on we consider only function fields.



Some basic notions of algebraic geometry.
For any ring A, Grothendieck defined the “affine scheme” Spec(A), such that the ring
of functions on Spec(A) is A. For any ideal I ⊂ A, Spec(A/I) is a closed subscheme of
Spec(A), such that the restriction of functions from Spec(A) to Spec(A/I) is the
quotient morphism A→ A/I. He defined general schemes by gluing affine schemes
along open subschemes.
For example, if N is a positive integer, Spec(Z/NZ) is a closed subscheme of
Spec(Z). This gives an alternative definition of the level as a subscheme, which will be
useful in the case of function fields.
When k is a field and A ⊃ k (we say that A is a k-algebra), Spec(A) is called an affine
scheme over k. If in addition A has no non zero nilpotent elements, Spec(A) is called
an affine algebraic variety over k. For example An = Spec k[t1, ..., tn] is called the
affine space of dimension n.
When a field is finite, its cardinal q is always a power of a prime number, and it is
denoted by Fq. If q is a prime number, Fq = Z/qZ.
For any Fq-algebra A, the Frobenius morphism A→ A, x 7→ xq is an endomorphism of
Fq-algebras. For any scheme S over Fq we denote by FrobS : S → S the morphism
acting on functions by Frob∗S(f ) = f q.



Definition of function fields.

A function field F is the field of rational functions on a smooth projective curve X over
a finite field Fq.
A curve means an algebraic variety of dimension 1, smooth means nonsingular and
projective means that we add the points at infinity.
A rational function is an algebraic function with arbitrary poles.
The simplest example is F = Fq(t), the field consisting of all P/Q, with P,Q in the
ring Fq[t] of polynomials in t and Q 6= 0. Denoting by t the coordinate on the affine
line A1 we see that Fq[t] is the ring of functions on A1 and F = Fq(t) is the field of
rational functions on the projective line X = P1 = A1 ∪ {∞}.
We can consider Fq(t) as an analogue of Q and Fq[t] as an analogue of Z. The order
of the pole (or minus the order of the zero) at ∞ for non zero elements of Fq(t) is an
analogue of log |.|R for non zero elements of Q. We note that Fq[t] is a unique
factorization ring like Z and that unitary irreducible polynomials in Fq[t] play the same
role as prime numbers in Z.



Places of F=closed points of the curve X .

We recall that X is a smooth projective curve over a finite field Fq and F is its field of
rational functions.
We define the closed points of X as the irreducible subschemes of X of dimension 0.
For any closed point v the ring of functions on v is a finite extension of Fq denoted by
k(v) and called the residue field at v .
For example, when X = P1 = A1 ∪ {∞}, the closed points are
I ∞ (where the residue field k(∞) is Fq),
I for any unitary irreducible polynomial P in Fq[t], we have a closed point v ⊂ A1

such that k(v) = Fq[t]/P is a finite extension of Fq of degree deg(P) and the
quotient morphism Fq[t]→ Fq[t]/P is the restriction from functions on A1 to
functions on v .

The closed points of X are exactly the places of F : for each closed point v , we
denote by Fv the completion of F for the norm |.|v such that for f ∈ F ∗,
|f |v = (]k(v))− ordv (f ) where ordv (f ) is the order of vanishing (also called order of the
zero) of f at v . Its ring of integers OFv = {a ∈ Fv , |a|v ≤ 1} is the ring of functions on
the formal neighborhood of v in X .



Geometric interpretation of the adelic quotient.
We recall that the ring of adèles of F is the restricted product

∏′
v Fv , consisting of

elements of the product which belong to OFv for all v but finitely many.
We denote by O =

∏
v OFv the ring of integral adèles.

We recall that G denotes a split reductive group over F .
We have

G(F )\G(A)/G(O) = BunG(Fq) (0.1)

where BunG(Fq) is the set of isomorphism classes of G-principal bundles over X .
We recall that a G-principal bundle over X is defined as a morphism Y → X equipped
with a simply transitive action of G on the fibers. The GLr -principal bundles can be
equivalently seen as the frame bundles of the vector bundles of rank r .
Equality (0.1) holds because any G-principal bundle over X can be trivialized over
X \ S where S is a finite set of places of X , and is then given by an element of∏

v∈S G(Fv )/G(OFv ). Moreover G(A)/G(O) is the union of all
∏

v∈S G(Fv )/G(OFv )
where S varies, and two trivializations of a G-principal bundle over X \ S for some S
are related by the action of an element of G(F ).



Definition of automorphic forms over function fields.

Let N be a level, i.e. a finite subscheme of X (which is the same as a finite subset of
places of X with multiplicities).
Let ON be the ring of functions on N. We note that G(ON) is a finite group. We
define KN = Ker(G(O)→ G(ON)). It is an open compact subgroup of G(A).
Then we have

G(F )\G(A)/KN = BunG,N(Fq)

where BunG,N(Fq) is the set of isomorphism classes of G-principal bundles over X
together with a trivialization of their restriction to N.
Definition. An automorphic form with level N is a function on BunG,N(Fq).
In particular an automorphic form with trivial level is a function on
G(F )\G(A)/G(O) = BunG(Fq).



Stacks.

In fact, as G-principal bundles over X may have automorphisms, BunG,N(Fq) is a
groupoid whose elements have finite automorphism groups.
It is equal to the groupoid of the points over Fq of the stack BunG,N over Fq whose
“points” over a scheme S over Fq (by which we mean morphisms S → BunG,N)
classify the G-principal bundles over X × S together with a trivialization of their
restriction to N × S.
The products X × S and N × S are products of schemes over Spec(Fq). To explain
what it means in the case of affine schemes, we say that if A and B are Fq-algebras,
Spec(A)×Spec(Fq) Spec(B) = Spec(A⊗Fq B).

A stack is like an algebraic variety whose points may have algebraic automorphism
groups. For example the quotient of an algebraic variety by the action of an algebraic
group is a stack.



Definition of the vector space of cuspidal automorphic forms over function fields.

Let ` be a prime number not dividing q.
We recall that Z` = lim←−Z/`nZ and Q` = Z`[1/`]. Let Q` be an algebraic closure of
Q`, i.e. it is obtained by adding to Q` all the roots of all polynomials with coefficients
in Q`.
We write

Aut = C cusp
c (BunG,N(Fq),Q`)

the Q`-vector space formed by “cuspidal” functions on BunG,N(Fq) (considered as a
set). The cuspidal automorphic forms are the “elementary bricks” to build all
automorphic forms and it is enough to understand them.
We can define cuspidal automorphic forms with coefficients in Q. We take them with
coefficients in Q` because the `-adic cohomology we need to use and the Langlands
parameters we want to construct are both with coefficients in Q`.



Definition of the unramified Hecke operators.
We assume first that N is empty. Let v be a closed point of X .
If G and G′ are two G-principal bundles over X we say that G′ is a modification of G at
v if we are given an isomorphism between their restrictions to X \ v . Then their
relative position [G′ : G] at v is a dominant coweight λ of G (when G = GLn it is the
n-uple of the elementary divisors). We introduce the unramified Hecke operator

Tλ,v : C cusp
c (BunG(Fq),Q`)→ C cusp

c (BunG(Fq),Q`)
f 7→

[
G 7→

∑
G′,[G′:G]=λ

f (G′)
]

where the finite sum is taken over all the modifications G′ of G at v with relative
position λ.
In the same way, with a level N, and for any closed point v in X \N, and any coweight
λ, we have Tλ,v acting on Aut = C cusp

c (BunG,N(Fq),Q`).
When λ varies the operators Tλ,v span the unramified Hecke algebra Hv which is
commutative and acts on Aut.



Definition of the global Langlands parameters.
Let F be an algebraic closure of the function field F , i.e. it is obtained by adding to F
all the roots of all polynomials with coefficients in F .
We denote by Gal(F/F ) the Galois group of automorphisms of F which are Id on F .
It is a profinite group.
For any open subscheme U ⊂ X (the complement of a finite number of closed points),
we denote by F U ⊂ F the subfield generated by all finite extensions of F associated to
unramified coverings of U. Then Gal(F/F ) acts on F U by a quotient denoted by π1(U)
(with base point SpecF ), which is an analogue of the Poincaré group in topology.
Definition. A global Langlands parameter is a Ĝ(Q`)-conjugacy class of continuous
and semisimple morphisms σ : Gal(F/F )→ Ĝ(Q`), factorizing through π1(U) for some
open subscheme U ⊂ X .
We use Q` and not C because the continuous morphisms Gal(F/F )→ Ĝ(C) have
finite image and it turns out that there are not enough of them to parameterize all
automorphic forms.



Statement of the main theorem.
To simplify the statement of the theorem we assume from now on that G is
semisimple, i.e. its center is finite. Then Aut is a Q`-vector space of finite dimension.
Theorem. We have a canonical decomposition Aut =

⊕
σ Hσ indexed by global

Langlands parameter σ : π1(X \ N)→ Ĝ(Q`). It is respected by all Hecke operators,
and compatible with the Satake isomorphism at all closed points of X \ N.
Unfortunately we don’t know the multiplicities for the spaces Hσ as modules over the
Hecke algebras, although multiplicity formulas were conjectured by Arthur.
In the case where G = GLn everything was already known from the works of Drinfeld
for n = 2 and of Laurent Lafforgue for arbitrary n. Their method used stacks of
shtukas and the Arthur-Selberg trace formula.

The proof of the theorem above uses
I more general stacks of shtukas (introduced by Drinfeld and Varshavsky)
I the geometric Satake equivalence (due to Lusztig, Drinfeld, Ginzburg, and

Mirkovic–Vilonen).



Meaning of the compatibility with the Satake isomorphism stated in the theorem.
The Satake isomorphism is a canonical isomorphism

[V ] 7→ TV ,v

from the Q`-algebra of representations of Ĝ to the unramifed Hecke algebra Hv (if V
is an irreducible representation of Ĝ , TV ,v is a combination of the Tλ,v for λ a weight
of V ).
We have π1(v) := Gal(k(v)/k(v)) = Ẑ with generator Frobv : x 7→ xqd where d is the
degree of v (such that the cardinal of k(v) is qd).
We still denote by Frobv ∈ π1(X \ N) the image of Frobv ∈ π1(v) by the morphism
π1(v)→ π1(X \ N) (to understand this morphism remember that v ⊂ X \ N and, by
analogy with topology, that any morphism of schemes Y → Z gives a morphism of
groups π1(Y )→ π1(Z )). The element Frobv ∈ π1(X \ N) is well defined up to
conjugacy, and called a Frobenius element at v .
Then the compatibility of the decomposition Aut =

⊕
σ Hσ with the Satake

isomorphism means that for any closed point v of X \ N and for any representation V
of Ĝ , TV ,v preserves this decomposition and acts on Hσ by multiplication by
TrV (σ(Frobv )).
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Idea of the proof of the theorem.
In the 15 next slides we explain the idea of the proof of the theorem. To simplify we
assume that N is empty.
We will construct a commutative algebra B of “excursion operators” containing all the
Hv and such that
I B acts naturally on Aut

I each character ν of B corresponds in a unique way to a Langlands parameter σ.
Since B is commutative we will obtain a canonical spectral decomposition

Aut =
⊕
ν

Hν

where the sum is taken over the characters ν of B. By associating to every ν a
Langlands parameter σ we will deduce the decomposition of the theorem

Aut =
⊕
σ

Hσ.



Sites and topos (1).

To construct this algebra B we will use the `-adic cohomology of the stacks of shtukas.
The `-adic cohomology of stacks (of characteristic 6= `) is very similar to the Betti
cohomology of complex varieties, but it has coefficients in Q` or Q`. To define it
Grothendieck introduced the notion of topos, an extraordinary generalization of the
usual notion of topological space.
To a topological space Y we can associate the category whose
I objects are the open subsets U ⊂ Y
I arrows U → V are the inclusions U ⊂ V

and we have the notion of covering of an open subset by a family of open subsets.



Sites and topos (2).

A site is an abstract category with a notion of covering of objects by families of
objects, satisfying some natural axioms. A sheaf of sets F on a site is a contravariant
functor U 7→ F(U) =“set of sections of F over U”, such that for any covering of U by
a family (Ui )i∈I , a section of F over U is the same as a family of sections of F over Ui
satisfying a gluing condition. We can associate to any sheaf of abelian groups on a site
its Čech cohomology exactly as on a topological space.
Although it is not necessary for what follows, we mention the notion of topos
introduced by Gothendieck. A topos is the category of sheaves of sets on a site. It is
the most fundamental notion. For example a Čech cohomology can be associated to
any “object in abelian groups” of a topos.



The Etale Site.

To define the étale cohomology of an algebraic variety Y (say smooth to simplify)
Grothendieck introduced the étale site whose objects are the étale morphisms

U
��

Y

(a morphism is étale if its differential is everywhere inversible), whose arrows are given
by commutative triangles of étale morphisms

U
  

// V
~~

Y

and with the obvious notion of covering.



Etale cohomology.

The étale cohomology of an algebraic variety Y over an algebraically closed field of
characteristic 6= ` is defined as the Čech cohomology of the étale site of Y with
coefficients in Z/`nZ, whence Z` by passing to the projective limit, and Q` by inverting
`.
If Y is defined over a general field k of characteristic 6= `, H∗(Yk ,Q`) is equipped with
a continuous action of Gal(k/k) (in the same way as, if Y is an algebraic variety over
R, the Betti cohomology of YC is equipped with an action of Gal(C/R) = Z/2Z).
More generally, we can define the étale cohomology of any stack Y over an
algebraically closed field, with coefficients in any Q`-sheaf F (which means roughly a
sheaf of Q`-vector spaces on Y ).



Definition of the stack of shtukas.
For any scheme S over Fq we recall that FrobS : S → S is the morphism acting on
functions by Frob∗S(f ) = f q.
Let I be a finite set. We define ShtI as the stack over X I whose “points” over a
scheme S over Fq (by which we mean morphisms S → ShtI) classify shtukas, namely
I points (xi )i∈I : S → X I , called the legs of the shtuka,
I a G-principal bundle G over X × S,
I an isomorphism

φ : G
∣∣
(X×S)r(

⋃
i∈I Γxi )

∼→ (IdX ×FrobS)∗(G)
∣∣
(X×S)r(

⋃
i∈I Γxi )

where Γxi ⊂ X × S denotes the graph of xi .
It is a Deligne-Mumford stack (i.e. the automorphism groups of points are finite).
The stack of shtukas without legs Sht∅ is equal to the groupoid BunG(Fq).
Remark. Shtukas do not have analogues over number fields in general because nobody
knows what (Spec(Z))I should be for ]I > 1. Remarkably Scholze defined an analogue
of local shtukas over Qp.



The geometric Satake equivalence.
We define MI as the stack over X I whose points over a scheme S over Fq classify
I points (xi )i∈I : S → X I ,
I G-principal bundles G and G′ over the formal completion X̂ × S of X × S along

the union of the Γxi ,
I an isomorphism

φ : G
∣∣
X̂×Sr(

⋃
i∈I Γxi )

∼→ G′
∣∣
X̂×Sr(

⋃
i∈I Γxi )

where Γxi denotes the graph of xi .
Thus MI(S) depends only on

⋃
i∈I Γxi .

Fusion of legs is what happens when some xi become equal.
The geometric Satake equivalence associates to any finite set I and any finite
dimensional Q`-linear representation W of Ĝ I a perverse sheaf SI,W on MI , which is
functorial in W and compatible with the fusion of legs.

The obvious forgetful morphism α : ShtI →MI is smooth.
We define a perverse sheaf FI,W on ShtI as the pull-back α∗(SI,W ).



The `-adic cohomology of the stacks of shtukas.

We denote by HI,W a Q`-vector subspace of the `-adic cohomology with compact
support of the fiber of ShtI over a geometric generic point of X I (or, in fact
equivalently, over a geometric generic point of the diagonal X ⊂ X I) with coefficients
in FI,W . This subspace is defined by a technical condition of Hecke-finiteness. By the
work of Cong Xue, it may equivalently be defined by a cuspidality condition, and it is
of finite dimension over Q`.
We note that what matters is not the total space ShtI but the morphism

ShtI
��

X I

(which associates to a shtuka the I-uple of its legs).
The Q`-vector space HI,W is equipped with a continuous action of (Gal(F/F ))I

(thanks to partial Frobenius morphisms introduced by Drinfeld).



The strategy to construct the algebra B of excursion operators.

When I = ∅ and W = 1 (the trivial one-dimensional representation), we have an
isomorphism

H∅,1 ' C cusp
c (BunG(Fq),Q`) = Aut

because Sht∅ = BunG(Fq), and F∅,1 is the constant sheaf Q`.
Thus we want to construct a decomposition

H∅,1 =
⊕
σ

Hσ.

The idea is to consider H∅,1 as the “vector space of quantum states with zero particles”
and HI,W as the “vector space of quantum states with particles indexed by I with spins
given by W ”. Then the operators in B ⊂ End(H∅,1) are obtained by creating particles,
making them interact, and annihilating them, as we shall see more precisely later.



Properties of the HI,W
a) Functoriality of HI,W in W
For any finite set I,

W 7→ HI,W

is a Q`-linear functor from the category of representations of Ĝ I to the category of
representations of Gal(F/F )I .
This means that for any morphism

u : W →W ′

of representations of Ĝ I , we have a morphism

H(u) : HI,W → HI,W ′

of representations of Gal(F/F )I .



b) Fusion for the HI,W

Fusion can be associated to any map ζ : I → J but we consider here only the case
where J is a singleton, which we denote by {0}.
For any representation W of Ĝ I , we have a fusion isomorphism, functorial in W ,

HI,W
∼→ H{0},Wdiag

where Wdiag denotes the representation of Ĝ on W obtained by composition with the
diagonal morphism Ĝ → Ĝ I .



Two examples of the fusion isomorphism of the previous slide.

I If W1 and W2 are two representations of Ĝ , we have the fusion isomorphism

H{1,2},W1�W2
∼→ H{0},W1⊗W2

associated to the obvious map {1, 2} → {0}. We note the difference between
W1 �W2 which is a representation of (Ĝ)2 and W1 ⊗W2 which is a
representation of Ĝ .

I We have the fusion isomorphism

H∅,1
∼→ H{0},1

associated to the obvious map ∅ → {0} (the idea is that H∅,1, resp. H{0},1 is the
cohomology of the stack of shtukas without legs, resp. with an inactive leg and
that they are identical). Thus Aut = H{0},1 and we will use this equality in the
next slide.



Construction of the algebra B of excursion operators.

For any algebraic function f on Ĝ\Ĝ I/Ĝ we can find a representation W of Ĝ I and
x ∈W and ξ ∈W ∗ invariant by the diagonal action of Ĝ such that

f ((gi )i∈I) = 〈ξ, (gi )i∈I · x〉. (0.2)

Let (γi )i∈I ∈ (Gal(F/F ))I . The excursion operator SI,f ,(γi )i∈I of H{0},1 = Aut is defined
as the composition

H{0},1
H(x)−−−→ H{0},Wdiag

fusion
∼→ HI,W

(γi )i∈I−−−−→ HI,W
fusion
∼→ H{0},Wdiag

H(ξ)−−−→ H{0},1

where Wdiag is the diagonal representation of Ĝ on W , and x : 1→Wdiag and
ξ : Wdiag → 1 are considered here as morphisms of representations of Ĝ .
We show easily that the construction above does not depend on the choice of W , x , ξ
satisfying (0.2).



Construction of the decomposition of the theorem.

Thanks to the properties of the HI,W explained in the previous slides we show that
1) the algebra B of endomorphisms of H{0},1 = Aut generated by the SI,f ,(γi )i∈I
when I, f and (γi )i∈I vary is commutative and the SI,f ,(γi )i∈I satisfy some natural
relations,
2) for any character ν of B there is a unique Langlands parameter σ such that for
any I, f and (γi )i∈I ,

ν(SI,f ,(γi )i∈I ) = f ((σ(γi ))i∈I).

Since B is commutative we have a canonical spectral decomposition H{0},1 =
⊕
ν Hν

where the sum is taken over characters ν of B (in other words Hν is a generalized
eigenspace for the elements of B). Associating to ν a unique Langlands parameter σ as
in 2) we deduce the decomposition H{0},1 =

⊕
σ Hσ we wanted to construct.



Compatibility with the Satake isomorphism and end of the proof of the theorem.
The unramified Hecke operators are particular cases of excursion operators.
Indeed let V be an irreducible representation of Ĝ . We take

I = {1, 2} and f : (g1, g2) 7→ TrV (g1g−1
2 ) as a function on Ĝ\Ĝ I/Ĝ .

By a geometric argument (computing the intersection of algebraic cycles in the stack
of shtukas) we show that for any closed point v ,

TV ,v = S{1,2},f ,(Frobv ,1).

This equality plays an important role in technical arguments, and it justifies the
compatibility of the decomposition with Satake isomorphism at closed points v of X .

The theorem is proven. Now I explain an heuristics which goes farther and unveils, a
posteriori, why the construction of excursion operators worked.



The Arthur-Kottwitz heuristics for the HI,W is that for every σ there exists a Q`-linear
representation Aσ of its centralizer Sσ ⊂ Ĝ , so that

HI,W
?=
⊕
σ

(
Aσ ⊗WσI

)Sσ

where Sσ acts diagonally and WσI is the representation of Gal(F/F )I obtained by
composition of the representation W of Ĝ I with the morphism σI : Gal(F/F )I → Ĝ I .
Taking I = ∅ and W = 1, H∅,1

?=
⊕
σ

(
Aσ
)Sσ should be the decomposition

H∅,1 =
⊕

σ Hσ of the theorem. Thus in this heuristics the excursion operator SI,f ,(γi )i∈I

should act on the subspace Hσ =
(
Aσ
)Sσ of H∅,1 ' H{0},1 by the composition

(
Aσ ⊗ 1

)Sσ IdAσ ⊗x
−−−−−→

(
Aσ ⊗W

)Sσ IdAσ ⊗(σ(γi ))i∈I−−−−−−−−−−→
(
Aσ ⊗W

)Sσ IdAσ ⊗ξ−−−−−→
(
Aσ ⊗ 1

)Sσ

i.e. by multiplication by the scalar 〈ξ, (σ(γi ))i∈I · x〉 = f ((σ(γi ))i∈I) and Hσ should be
the eigenspace of the excursion operators for this system of eigenvalues.



A construction proposed by Drinfeld.

We do not know the previous heuristics. For example we only know that Hσ is a
generalized eigenspace for the excursion operators (there could perhaps be nilpotents
in the algebra B).
Nevertheless, thanks to an idea of Drinfeld we can even obtain something close to the
Arthur-Kottwitz heuristics. Let Reg be the left regular representation of Ĝ (i.e. the
action by left translation of Ĝ on the vector space of all algebraic functions on Ĝ). We
can endow H{0},Reg with

a) a structure of O-module on the “space” S of morphisms σ : Gal(F/F )→ Ĝ ,
b) an action of Ĝ compatible with conjugation by Ĝ on S.

This gives rise to a O-module on the “stack” S/Ĝ of Langlands parameters and Aσ
should be the fiber of this O-module at σ. It would be equipped with an action of the
centralizer Sσ, which is the automorphism group of σ in S/Ĝ .
Xinwen Zhu and I prove this works over elliptic σ (which means that Sσ is finite).



A joint work with Alain Genestier.

In the main theorem the canonical decomposition

C cusp
c (BunG,N(Fq),Q`) =

⊕
σ

Hσ, (0.3)

is preserved by all Hecke operators, including ramified Hecke operators (not defined in
this talk) at closed points v in N.
The theorem gives the compatibility with the Satake isomorphism at closed points in
X \ N but does not say how the action on Hσ of ramified Hecke operators at closed
points v in N is related to σ.
In a joint work with Alain Genestier, we construct a local parameterization up to
semisimplification and show a local-global compatibility at all closed points.
It implies that in the decomposition above, for any closed point v ∈ N, the
semisimplification of σ

∣∣
Gal(Fv/Fv ) depends only on the character by which the center of

the algebra of ramified Hecke operators at v acts on Hσ.



Some open questions.
1) In this work we construct a decomposition Aut =

⊕
σ Hσ but we are not able to

compute multiplicities of the Hσ as modules over the Hecke algebras (we are not even
able to show that they are nonzero). Arthur has conjectured a formula for them. The
trace formula methods allow to prove some cases (Drinfeld, Laumon, Laurent
Lafforgue, Ngo Bao Chau, Lau, Ngo Dac Tuan and the work of Arthur for classical
groups). Alain Genestier and I plan to use the methods explained here to study the
internal structure of the local L-packets and the structure of the multiplicity formulas.
2) We hope that all Langlands parameters σ which appear in this decomposition come
from elliptic Arthur parameters. This would imply the Ramanujan-Petersson conjecture
for all reductive groups over function fields. We even hope that there is a
decomposition of the vector space of all discrete automorphic forms indexed by elliptic
Arthur parameters.



3) We hope that the decomposition

C cusp
c (BunG,N(Fq),Q`) =

⊕
σ

Hσ

is defined over Q (instead of Q`) and is independent on ` and on the embedding
Q ⊂ Q`. The question makes sense because in a recent article Drinfeld defines the set
of Langlands parameters σ independently of `.
We could prove this is true if we knew how to construct the excursion operators in a
motivic way (then the σ would be motivic Langlands parameters).
Grothendieck motives form a Q-linear category and unite all `-adic cohomologies for
different ` : a motive is a piece of “universal cohomology” of a variety.



Related works (it is not possible to quote all of them).
1) The work of Böckle, Harris, Khare, and Thorne on potential automorphy and the
work of Zhiwei Yun and Wei Zhang on shtukas and L-functions were explained at this
conference. A work of Liang Xiao and Xinwen Zhu clarified in particular the
Eichler-Shimura relations (a technical tool not explained in this talk).
2) Finkelberg, Lysenko and Gaitsgory studied the metaplectic case of the `-adic
geometric Langlands program. In particular the metaplectic variant of the geometric
Satake equivalence is used to extend the main theorem of this talk to the metaplectic
case.
3) An important work of Gaitsgory in the geometric Langlands program for D-modules
shows that, when X is a curve over C, the ∞-category D-mod(BunG) of D-modules
over BunG admits a spectral decomposition along the stack LocSysĜ of Ĝ-local
systems over X . Arinkin and Gaitsgory defined a ∞-category of O-modules over
LocSysĜ to which D-mod(BunG) should be equivalent. Many progresses were made
also in the ramified situation and the local geometric Langlands program, and in the
quantum geometric Langlands program.
4) Gaitsgory and Lurie used ideas related to fusion to prove Weil’s conjecture on
Tamagawa numbers over function fields.



Homage to Alexander Grothendieck (1928-2014).
As other works in algebraic geometry, this
one relies on ideas of Grothendieck :
functorial definition of schemes and stacks,
tannakian formalism, Quot construction of
BunG , étale cohomology. His vision of
topos and motives already had tremendous
consequences and others are certainly yet
to come. He also had a strong influence
outside of his school, as testified by the rise
of higher categories and the work of
Beilinson, Drinfeld, Gaitsgory, Kontsevich,
Lurie, Voevodsky (who, sadly, passed away
recently) and many others. He changed not
only mathematics, but also the way we
think about it.


