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Abstract. Let H = 〈a, b | a[a, b] = [a, b]a ∧ b[a, b] = [a, b]b〉 be
the discrete Heisenberg group, equipped with the left-invariant
word metric dW (·, ·) associated to the generating set {a, b, a−1, b−1}.
Letting Bn = {x ∈ H : dW (x, eH) 6 n} denote the corresponding
closed ball of radius n ∈ N, and writing c = [a, b] = aba−1b−1, we
prove that if (X, ‖·‖X) is a Banach space whose modulus of uniform
convexity has power type q ∈ [2,∞) then there exists K ∈ (0,∞)
such that every f : H→ X satisfies

n2∑
k=1

∑
x∈Bn

‖f(xck)− f(x)‖qX
k1+q/2

6 K
∑

x∈B21n

(
‖f(xa)− f(x)‖qX + ‖f(xb)− f(x)‖qX

)
.

It follows that for every n ∈ N the bi-Lipschitz distortion of ev-
ery f : Bn → X is at least a constant multiple of (log n)1/q, an
asymptotically optimal estimate as n→∞.

1. Introduction

The discrete Heisenberg group, denoted H, is the group generated by
two elements a, b ∈ H, with the relations asserting that the commutator
[a, b] = aba−1b−1 is in the center of H. Thus H is given by the presen-
tation H = 〈a, b | a[a, b] = [a, b]a ∧ b[a, b] = [a, b]b〉. Write c = [a, b]
and let eH denote the identity element of H. The left-invariant word
metric on H induced by the symmetric generating set {a, b, a−1, b−1} is
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denoted dW (·, ·). For n ∈ N let Bn = {x ∈ H : dW (x, eH) 6 n} denote
the corresponding closed ball of radius n.

A Banach space (X, ‖ · ‖X) is said to be uniformly convex if for
every ε ∈ (0, 1) there exists δ ∈ (0, 1) such that every x, y ∈ X with
‖x‖X = ‖y‖X = 1 and ‖x− y‖X > ε satisfy ‖x+ y‖X 6 2(1− δ). The
supremum over those δ ∈ (0, 1) for which this holds true is denoted
δ(X,‖·‖X)(ε), and is called the modulus of uniform convexity of (X, ‖·‖X).
An important theorem of Pisier [Pis75] asserts that every uniformly
convex Banach space (X, ‖ · ‖X) admits an equivalent norm ‖ · ‖ for
which there exist q ∈ [2,∞) and η ∈ (0, 1) such that δ(X,‖·‖)(ε) > (ηε)q

for all ε ∈ (0, 1). For concreteness we recall [Han56] that if p ∈ (1,∞)
then `p satisfies such an estimate with q = max{p, 2}.

Theorem 1.1 (Vertical versus horizontal Poincaré inequality). For
every η ∈ (0, 1) and q ∈ [2,∞) there exists K = K(η, q) ∈ (0,∞)
with the following property. Suppose that (X, ‖ · ‖X) is a Banach space
satisfying δ(X,‖·‖X)(ε) > (ηε)q for every ε ∈ (0, 1). Then for every
n ∈ N and every f : H→ X we have

n2∑
k=1

∑
x∈Bn

‖f(xck)− f(x)‖qX
k1+q/2

6 K
∑

x∈B21n

(
‖f(xa)− f(x)‖qX + ‖f(xb)− f(x)‖qX

)
. (1)

The constant 21 appearing in the range of the summation on the
right hand side of (1) is an artifact of our proof and is not claimed to
be sharp. The important point here is that the summation on the right
hand side of (1) is over x ∈ Bλn for some universal constant λ ∈ N.
One can clearly make the same statement for word metrics induced by
other finite symmetric generating sets of H: the choice of generating
set will only affect the value of λ.

An inspection of our proof of Theorem 1.1 reveals that K1/q . 1/η,
but we will not explicitly track the value of such constants in the ensu-
ing discussion. Here, and in what follows, we use A . B and B & A to
denote the estimate A 6 CB for some absolute constant C ∈ (0,∞). If
we need C to depend on parameters, we indicate this by subscripts, thus
e.g. A .α B means that A 6 CαB for some Cα ∈ (0,∞) depending
only on α. We shall also use the notation A � B for A . B ∧ B . A,
and similarly A �α B stands for A .α B ∧ B .α A.

We call (1) a “vertical versus horizontal Poincaré inequality” for the
following reason. The right hand side of (1) is the `q norm of the
discrete horizontal gradient of f : it measures the “local” variation of f
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along the edges of the Cayley graph of H (a.k.a. the horizontal edges
in H). The left hand side of (1) measures the “global” variation of f
along the center of H (a.k.a. the vertical direction in H). Theorem 1.1
asserts that the global vertical variation of f is always bounded by its
local horizontal variation. Thus, if the right hand side of (1) is small
then f must collapse distances along the center of H.

The (bi-Lipschitz) distortion of a finite metric space (M,dM) in a
Banach space (X, ‖ · ‖X), denoted cX(M,dM) ∈ [1,∞), is the in-
fimum over those D ∈ [1,∞) for which there exists an embedding
f : M → X that satisfies dM(x, y) 6 ‖f(x) − f(y)‖X 6 DdM(x, y)
for all x, y ∈ M . When X = `p for some p ∈ [1,∞) it is customary
to write c`p(M,dM) = cp(M,dM). The quantity c2(M,dM) is known
as the Euclidean distortion of (M,dM). Suppose that (X, ‖ · ‖X) sat-
isfies the assumption of Theorem 1.1 and that f : H → X satisfies
dW (x, y) 6 ‖f(x) − f(y)‖X 6 DdW (x, y) for all x, y ∈ B22n. Since

dW (ck, eH) �
√
k for every k ∈ N and |Bm| � m4 for every m ∈ N (see

e.g. [Bla03]), Theorem 1.1 applied to f yields the following estimate.

n4 log n .
n2∑
k=1

n4 kq/2

k1+q/2
.X n4Dq. (2)

We therefore obtain the following corollary of Theorem 1.1.

Corollary 1.2 (Sharp nonembeddabilty of balls in H). Fix η ∈ (0, 1)
and q ∈ [2,∞). Suppose that (X, ‖ · ‖X) is a Banach space satisfying
δ(X,‖·‖X)(ε) > (ηε)q for every ε ∈ (0, 1). Then for every n ∈ N we have

cX (Bn, dW ) &η (log n)1/q.

Corollary 1.2 yields an estimate on cX(Bn, dW ) in terms of the mod-
ulus of uniform convexity of (X, ‖ · ‖X) which is asymptotically best
possible, up to constant factors that are independent of n. The fol-
lowing corollary states this explicitly for the case of special interest
X = `p, though one could equally well state such results for a variety
of concrete spaces for which the modulus of uniform convexity has been
computed (e.g., the same conclusion holds true with `p replaced by the
Schatten class Sp, due to the computation of its modulus of uniform
convexity in [TJ74]).

Corollary 1.3. For every integer n > 2 we have

p ∈ (1, 2] =⇒ cp(Bn, dW ) �p
√

log n,

and
p ∈ [2,∞) =⇒ cp(Bn, dW ) �p (log n)1/p.



4 VINCENT LAFFORGUE AND ASSAF NAOR

The lower bounds on cp(Bn, dW ) that appear in Corollary 1.3 are a
special case of Corollary 1.2 (in this case q = max{p, 2}). There are
several ways to establish the asymptotically matching upper bounds.
Assouad proved in [Ass83] that there exists k ∈ N and 1-Lipschitz
functions {φj : H→ Rk}∞j=1 such that for every x, y ∈ H and j ∈ N,

dW (x, y) ∈ [2j−1, 2j] =⇒ ‖φj(x)− φj(y)‖∞ & dW (x, y).

By concatenating φ1, . . . , φm for m � log n one sees that the distortion
lower bounds of Corollary 1.3 are indeed asymptotically sharp. An
alternative embedding of (Bn, dW ) into `p with the desired distortion
bound was found by Tessera in [Tes08]. For p = 2 one can use the
explicit closed-form embedding of H into `2 of [LN06], where for every
ε ∈ (0, 1) a mapping fε : H→ `2 is given with

∀x, y ∈ H, dW (x, y)1−ε 6 ‖fε(x)− fε(y)‖2 .
dW (x, y)1−ε√

ε
.

Setting ε = 1/ log n shows that c2(Bn, dW ) .
√

log n.
The above distortion bounds complete a sequence of investigations

of the (non)embeddability of the Heisenberg group into “nice” Ba-
nach spaces. A famous observation of Semmes [Sem96] shows that
Pansu’s differentiation theorem for Carnot groups [Pan89] implies that
H does not admit a bi-Lipschitz embedding into Rn for any n ∈ N.
Alternative proofs of this fact were obtained by Cheeger [Che99] and
Pauls [Pau01]. The fact that the Pansu-Semmes argument can be ex-
tended to certain infinite dimensional targets, yielding in particular the
bi-Lipschitz nonembeddability of H into any uniformly convex Banach
space, was obtained independently by [CK06] and [LN06] (via different
arguments). In [CK10a] Cheeger and Kleiner proved that H does not
admit a bi-Lipschitz embedding into any L1(µ) space, a result that is
important for an application to theoretical computer science that will
be mentioned in Section 4. Note that not all uniformly convex Banach
spaces admit a bi-Lipschitz embedding into an L1(µ) space (e.g. `p for
p ∈ (2,∞)), but the Cheeger-Kleiner theorem does yield a new proof of
the nonembeddability of H into some uniformly convex spaces of inter-
est, such as Lp for p ∈ (1, 2], because they are isomorphic to subspaces
of L1. In [CK10b] Cheeger and Kleiner discovered a different proof of
the nonembeddability of H into an L1(µ) space.

The results quoted above imply that limn→∞ cX(Bn, dW ) = ∞ for
the respective target Banach spaces X, but they give no informa-
tion on the rate at which cX(Bn, dW ) tends to ∞ with n. In or-
der to obtain such quantitative nonembeddability results one needs
to overcome additional (conceptual and technical) issues. The first
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progress in this direction was due to [CKN11], where it is shown that
c1(Bn, dW ) & (log n)κ for some universal constant κ > 0. In [ANT10]
it is shown that c2(Bn, dW ) &

√
log n and that if (X, ‖ · ‖X) is a

Banach space satisfying δ(X,‖·‖X)(ε) &X εq for every ε ∈ (0, 1) then

cX(Bn, dW ) &X (log n/ log log n)1/q. Recently, Li [Li13] obtained a
quantitative version of Pansu’s differentiation theorem which yields the
estimate cX(Bn, dW ) &X (log n)θX for some θX > 0.

As explained above, except for the asymptotic evaluation of the Eu-
clidean distortion c2(Bn, dW ) that was obtained in [ANT10], computing
cX(Bn, dW ) up to constant factors that are independent of n remained
open for all non-Hilbertian Banach spaces (the lower bound in [ANT10]
was off by an iterated logarithm factor). Corollary 1.2 resolves this
problem for uniformly convex Banach spaces. Other than yielding a
complete result for an important class of Banach spaces, the signifi-
cance of Corollary 1.2 is that its proof is different from the approaches
that have been used thus far in the literature.

Specifically, all the above mentioned results first use a limiting argu-
ment that shows that it suffices to rule out low-distortion embeddings
that belong to a certain “structured” subclass of all the possible em-
beddings (e.g. in the case of the Pansu-Semmes proof one argues that
it suffices to deal with group homomorphisms). The proofs in [Pan89,
Sem96, Che99, Pau01, CK06, LN06, CK10a, CK10b, CKN11, Li13]
all apply this general “metric differentiation” strategy. The proof
in [ANT10] uses a different but related approach: one first argues that
it suffices to rule out embeddings that are 1-cocycles with respect to
an isometric action of H on X; when X is Hilbert space this is done
via an argument of Aharoni, Maurey and Mityagin [AMM85] and Gro-
mov [dCTV07], and for general uniformly convex X this is done via
an argument of [NP11]. When X is a general uniformly convex Ba-
nach space one proceeds in [ANT10] via an algebraic argument and a
quantitative version of a mean ergodic theorem, yielding a bound that
is off by an iterated logarithm factor. This argument fails to yield a
Poincaré inequality such as (1). The proof of the sharp estimate on
the Euclidean distortion c2(Bn, dW ) proceeds in [ANT10] by proving
the Hilbertian case of the Poincaré inequality (1): this is done using a
theorem of Guichardet [Gui72] that further reduces the problem to co-
boundaries, and since we are interested in an inequality that involves
squares of Euclidean distances, one can use the available orthogonality
to reduce to the case where the underlying unitary representation is
irreducible. Co-boundaries with respect to irreducible representations
may then be treated separately via a direct argument.
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We do not know how to prove Theorem 1.1 using the above strate-
gies: metric differentiation arguments seem to inherently lose (at least)
an iterated logarithm factor, and in the only case where a sharp bound
was proved the argument heavily uses the Hilbertian structure. Our
approach is therefore entirely different: we prove the inequality (1) di-
rectly via an analytic argument that relies on generalized Littlewood-
Paley g-function estimates. While our method does not yield an im-
proved lower bound on c1(Bn, dW ), it suggests a clean isoperimetric-
type inequality that, if true, would yield the (at present still conjec-
tural) sharp estimate c1(Bn, dW ) &

√
log n. This conjecture, whose

investigation is deferred to future work, is discussed in Section 4.

1.1. Overview of the proof of Theorem 1.1. In Section 3 we
prove that Theorem 1.1 follows from a certain global Poincaré-type
inequality on the continuous Heisenberg group. Following the strat-
egy of [ANT10], this is achieved through a localization step based on
a variant of Kleiner’s local Poincaré inequality [Kle10], combined with
a partition of unity argument. The heart of the matter is therefore
a continuous analogue of Theorem 1.1, which is formulated as Theo-
rem 2.1 below. In Section 2 we recall basic facts about the continuous
Heisenberg group, and state as Proposition 2.2 the main new estimate
that controls the left hand side of the desired Poincaré inequality (the
“vertical variation”) in terms of the time-evolutes of the horizontal
gradient of the given function under the time-derivative of the Poisson
semigroup along the center. Once this is achieved, we conclude the
proof using a vector-valued version of the Littlewood-Paley g-function
inequality that was proved by Martinez, Torrea and Xu in [MTX06].
The proof of the key estimate that is stated as Proposition 2.2 consists
of two steps. The first one follows the lines of a standard argument of
Littlewood-Paley theory that relates the left hand side of the desired
inequality to the evolutes of the given function under the Poisson semi-
group along the center (here we modify appropriately the exposition
in Stein’s book [Ste70]). The only part of our argument that uses the
geometry of the Heisenberg group appears in Lemma 2.4 below. This
limited use of Heisenberg geometry indicates that our arguments can
be adapted in a straightforward manner so as to apply to more general
nilpotent groups, but we did not attempt to carry out the proof in such
generality since it is not needed for our purposes.

Acknowledgements. We are grateful to Artem Kozhevnikov, Pierre
Pansu and Robert Young for enlightening discussions on the questions
presented in Section 4, and for sharing their ongoing work on this topic.
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2. Inequalities on the real Heisenberg group

We start by setting some (mostly standard) notation and terminol-
ogy. The Heisenberg group H can be identified with the following
matrix group, equipped with matrix multiplication.

H =


 1 x z

0 1 y
0 0 1

 : x, y, z ∈ Z

 .

Under this identification, we have

a =

 1 1 0
0 1 0
0 0 1

 and b =

 1 0 0
0 1 1
0 0 1

 .

Thus

c = aba−1b−1 =

 1 0 1
0 1 0
0 0 1

 .

We will reason below about the real Heisenberg group, denoted H(R),
which is defined as

H(R)
def
=


 1 x z

0 1 y
0 0 1

 : x, y, z ∈ R

 .

We will use the following notation for every x, y, z ∈ R.

ax
def
=

 1 x 0
0 1 0
0 0 1

 , by
def
=

 1 0 0
0 1 y
0 0 1

 , cz
def
=

 1 0 z
0 1 0
0 0 1

 .

Thus,

czbyax =

 1 x z
0 1 y
0 0 1

 .

It is convenient to identify H(R) with R3. In particular, for a Banach
space (X, ‖ · ‖X) and a mapping f : H(R) → X, we identify f(x, y, z)
with f(czbyax). Under this identification, the Lebesgue measure on R3

is a Haar measure on H(R); below we denote this measure on H(R) by
µ. The spaces R,R2,H(R) will always be understood to be endowed
with the Lebesgue measure. Thus for p ∈ [1,∞) the Lebesgue-Bochner
spaces Lp(R, X), Lp(R2, X), Lp(H(R), X) are defined unambiguously.
For f ∈ Lp(H(R), X) define f c : R→ Lp(R2, X) by

f c(z)(x, y) = f(x, y, z). (3)
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Given ψ ∈ L1(R), we define the convolution ψ ∗ f ∈ Lp(H(R), X) by
ψ ∗ f(x, y, z) = (ψ ∗ f c)(z)(x, y), i.e.,

ψ ∗ f(x, y, z)
def
=

∫
R
ψ(u)f(x, y, z − u)du ∈ X. (4)

Equivalently, ψ∗f is the usual group convolution of f with the measure
supported on the center of H(R) whose density is ψ.

Suppose that f : H(R) → X is smooth. The identification of H(R)
with R3 gives meaning to the partial derivatives ∂f

∂x
, ∂f
∂y

. We define the

left-invariant vector fields ∂af, ∂bf : H(R)→ X by

∂af(x, y, z)
def
=
∂f

∂x
(x, y, z), (5)

and

∂bf(x, y, z)
def
=
∂f

∂y
(x, y, z) + x

∂f

∂z
(x, y, z). (6)

The horizontal gradient of f is then defined as

∇Hf
def
= (∂af, ∂bf) : H(R)→ X ⊕X. (7)

Thus for p ∈ [1,∞) and x, y, z ∈ R we have

‖∇Hf(x, y, z)‖`2p(X)

=

(∥∥∥∥∂f∂x (x, y, z)

∥∥∥∥p
X

+

∥∥∥∥∂f∂y (x, y, z) + x
∂f

∂z
(x, y, z)

∥∥∥∥p
X

)1/p

.

Theorem 2.1 below, the case p = q of which establishes a continuous
version of the Poincaré inequality of Theorem 1.1, is the main result
of this section. Theorem 1.1 itself will be shown in Section 3 to follow
from Theorem 2.1 via a partition of unity argument.

Theorem 2.1 (Real vertical versus horizontal Poincaré inequality).
Suppose that q ∈ [2,∞) and p ∈ (1, q]. Let (X, ‖·‖X) be a Banach space
satisfying δ(X,‖·‖X)(ε) > (ηε)q for every ε ∈ (0, 1) and some η ∈ (0, 1).
Then every smooth and compactly supported f : H(R)→ X satisfies(∫ ∞

0

(∫
H(R)
‖f(hct)− f(h)‖pXdµ(h)

)q/p
dt

t1+q/2

)1/q

.η,p,q

(∫
H(R)
‖∇Hf(h)‖p`2p(X) dµ(h)

)1/p

. (8)
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In preparation for the proof of Theorem 2.1, we first prove some
preparatory lemmas. The Poisson kernel on R is defined as usual for
every t, x ∈ R by

Pt(x)
def
=

t

π(t2 + x2)
.

We also write

Qt(x)
def
=

∂

∂t
Pt(x) =

x2 − t2

π(t2 + x2)2
, (9)

and

Rt(x)
def
=

∂

∂x
Pt(x) =

−2tx

π(t2 + x2)2
. (10)

We record for future use that for every t ∈ (0,∞),∫ ∞
0

√
xPt(x)dx =

√
t

π

∫ ∞
0

√
y

1 + y2
dy =

√
t

2
, (11)

‖Qt‖L1(R) =
1

πt

∫
R

|1− y2|
(1 + y2)2

dy =
2

πt
, (12)

and

‖Rt‖L1(R) =
2

πt

∫
R

|y|
(1 + y2)2

dy =
2

πt
. (13)

(The precise constants appearing in (11), (12) and (13) are not needed
in the ensuing discussion: only the stated dependence on t up to con-
stant factors will be used.)

The main step of the proof of Theorem 2.1 is Proposition 2.2 below.

Proposition 2.2. Fix p, q ∈ [1,∞) and let (X, ‖ · ‖X) be a Banach
space. Every smooth and compactly supported f : H(R)→ X satisfies(∫ ∞

0

(∫
H(R)
‖f(hct)− f(h)‖pXdµ(h)

)q/p
dt

t1+q/2

)1/q

.

(∫ ∞
0

tq−1 ‖Qt ∗ ∇Hf‖qLp(H(R),`2p(X)) dt

)1/q

.

Remark 2.3. Continuing with the notation of Proposition 2.2, for every
t ∈ (0,∞) denote τtf : H(R) → X by τtf(h) = f(hct). Write also
St = π

2
tQt. By (12) this yields the normalization ‖St‖L1(R) = 1. The

assertion of Proposition 2.2 can then be rewritten as∥∥∥∥∥
∥∥∥∥τtf − f√

t

∥∥∥∥
Lp(H(R),X)

∥∥∥∥∥
Lq(R+,

dt
t )

.
∥∥∥‖St ∗ ∇Hf‖Lp(H(R),`2p(X))

∥∥∥
Lq(R+,

dt
t )
.
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Introducing St in this way helps explain the meaning of the powers of
t that appear in the statement of Proposition 2.2, but it makes the
ensuing proofs more cumbersome. We will therefore continue working
with Qt rather than St in what follows.

Assuming the validity of Proposition 2.2 for the moment, we now
proceed to show how it implies Theorem 2.1.

Proof of Theorem 2.1. Given a Banach space space (B, ‖ · ‖B), for ev-
ery function φ ∈ Lp(R,B) its generalized Littlewood-Paley g-function
Gq(φ) : R→ [0,∞] is defined as follows.

Gq(φ)(x)
def
=

(∫ ∞
0

tq−1 ‖Qt ∗ φ(x)‖qB dt
)1/q

. (14)

A beautiful theorem of Martinez, Torrea and Xu [MTX06, Thm. 2.1]
asserts that if δ(B,‖·‖B)(ε) > (ξε)q for every ε ∈ (0, 1) and some constant
ξ ∈ (0, 1) then for every p ∈ (1,∞),

φ ∈ Lp(R,B) =⇒ ‖Gq(φ)‖Lp(R,B) .ξ,p,q ‖φ‖Lp(R,B). (15)

In fact, it is shown in [MTX06] that the validity of (15) for some
p ∈ (1,∞) (equivalently for all p ∈ (1,∞)) is equivalent to B admitting
an equivalent norm whose modulus of uniform convexity is at least a
constant multiple of εq. Note that Theorem 2.1 of [MTX06] asserts (15)
under the assumption that (B, ‖ · ‖B) has martingale cotype q, but this
follows from our assumption on the modulus of uniform convexity of
(B, ‖ · ‖B) by important work of Pisier [Pis75].

We shall apply (15) to B = Lp(R2, `2p(X)). Since we are assuming in
Theorem 2.1 that p ∈ (1, q], by a result of Figiel [Fig76] there exists
ξ = ξ(η, p, q) ∈ (0, 1) such that δ(B,‖·‖B)(ε) > (ξε)q for every ε ∈ (0, 1)
(see Corollary 6.4 in [MN12] for an explicit dependence of ξ on η, p, q).
Recalling (3), consider the function φ = (∇Hf)c : R→ B. Then,(∫ ∞

0

tq−1 ‖Qt ∗ ∇Hf‖qLp(H(R),`2p(X)) dt

)1/q

=

(∫ ∞
0

(∫
R

(t ‖Qt ∗ φ(z)‖B)p dz

)q/p
dt

t

)1/q

(16)

6

(∫
R

(∫ ∞
0

(t ‖Qt ∗ φ(z)‖B)q
dt

t

)p/q
dz

)1/p

(17)

= ‖Gq(φ)‖Lp(R,B) .η,p,q ‖φ‖Lp(R,B), (18)
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where in (16) we used the definitions of B and φ, in (17) we used the
fact that p 6 q, and in (18) we used (14) and (15). Noting that by
the definition of φ we have ‖φ‖Lp(R,B) = ‖∇Hf‖Lp(H(R),`2p(X)), the desired

inequality (8) follows from Proposition 2.2. �

We now pass to the proof of Proposition 2.2.

Lemma 2.4. Suppose that p ∈ [1,∞) and t ∈ (0,∞). Then for every
Banach space (X, ‖ · ‖X) and every smooth and compactly supported
f : H(R)→ X we have

‖Qt ∗ f −Q2t ∗ f‖Lp(H(R),X) .
√
t · ‖Qt ∗ ∇Hf‖Lp(H(R),`2p(X)) . (19)

Proof. The semigroup property of Pt implies that P2t = Pt ∗ Pt. By
differentiating this identity with respect to t we have Q2t = Pt ∗ Qt.
Consequently, for every h ∈ H(R) we have

Qt ∗ f(h)−Q2t ∗ f(h) = Qt ∗ f(h)− Pt ∗Qt ∗ f(h)

=

∫
R
Pt(u)

(
Qt ∗ f(h)−Qt ∗ f(hc−u)

)
du, (20)

where we used the fact that
∫
R Pt(u)du = 1.

For every s ∈ [0,∞) let γs : [0, 4
√
s] → H(R) be the commutator

path joining eH and cs, i.e.,

γs(θ)
def
=


aθ if 0 6 θ 6

√
s,

a
√
sbθ−

√
s if

√
s 6 θ 6 2

√
s,

a
√
sb
√
sa−θ+2

√
s if 2

√
s 6 θ 6 3

√
s,

a
√
sb
√
sa−

√
sb−θ+3

√
s if 3

√
s 6 θ 6 4

√
s.

For every u ∈ [0,∞) and h ∈ H(R) we then have

Qt ∗ f(h)−Qt ∗ f(hc−u) = Qt ∗ f(hc−uγu(4
√
u))−Qt ∗ f(hc−u)

=

∫ 4
√
u

0

d

dθ
Qt ∗ f(hc−uγu(θ))dθ. (21)

Recalling (5) and (6), observe that for every θ ∈ [0, 4
√
u] we have

d

dθ
Qt ∗ f(hc−uγu(θ)) ∈

{
∂aQt ∗ f(hc−uγu(θ)), ∂bQt ∗ f(hc−uγu(θ))

}
=
{
Qt ∗ ∂af(hc−uγu(θ)), Qt ∗ ∂bf(hc−uγu(θ))

}
, (22)
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where we also used the fact that convolution with Qt commutes with
∂a and ∂b. Recalling (7), we deduce from (21) and (22) that(∫

H(R)

∥∥∥∥∫ ∞
0

Pt(u)
(
Qt ∗ f(h)−Qt ∗ f(hc−u)

)
du

∥∥∥∥p
X

dµ(h)

)1/p

6
∫ ∞
0

∫ 4
√
u

0

Pt(u)

(∫
H(R)

∥∥Qt ∗ ∇Hf(hc−uγu(θ))
∥∥p
`2p(X)

dµ(h)

)1/p

dθdu

=

(∫ ∞
0

4
√
uPt(u)du

)
‖Qt ∗ ∇Hf‖Lp(H(R),`2p(X)) (23)

= 2
√

2t · ‖Qt ∗ ∇Hf‖Lp(H(R),`2p(X)), (24)

where in (23) we used the right-invariance of the Haar measure µ on
H(R) and in (24) we used (11).

The analogue of (21) for u ∈ (−∞, 0] is the identity

Qt ∗ f(h)−Qt ∗ f(hc−u) = −
∫ 4
√
|u|

0

d

dθ
Qt ∗ f(hγ−u(θ))dθ.

This, combined with the above reasoning yields the estimate(∫
H(R)

∥∥∥∥∫ 0

−∞
Pt(u)

(
Qt ∗ f(h)−Qt ∗ f(hc−u)

)
du

∥∥∥∥p
X

dµ(h)

)1/p

6 2
√

2t · ‖Qt ∗ ∇Hf‖Lp(H(R),`2p(X)). (25)

(24) and (25) combined with (20) yields the desired inequality (19). �

Lemma 2.5. Fix p, q ∈ [1,∞). For every Banach space (X, ‖ · ‖X),
every smooth and compactly supported f : H(R)→ X satisfies(∫ ∞

0

t
q
2
−1 ‖Qt ∗ f‖qLp(H(R),X) dt

)1/q

.

(∫ ∞
0

tq−1 ‖Qt ∗ ∇Hf‖qLp(H(R),`2p(X)) dt

)1/p

.

Proof. Observe that limt→∞Qt ∗ f = 0 in Lp(H(R), X). Indeed, by
Young’s inequality,

‖Qt ∗ f‖Lp(H(R),X) 6 ‖Qt‖L1(R) · ‖f‖Lp(H(R),X)
(12)
=

2

πt
· ‖f‖Lp(H(R),X).

We therefore have the identity

Qt ∗ f =
∞∑
m=1

(Q2m−1t ∗ f −Q2mt ∗ f) ,
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from which it follows that

(∫ ∞
0

t
q
2
−1 ‖Qt ∗ f‖qLp(H(R),X) dt

)1/q

6
∞∑
m=1

(∫ ∞
0

t
q
2
−1 ‖Q2m−1t ∗ f −Q2mt ∗ f‖qLp(H(R),X) dt

)1/q

.
∞∑
m=1

(∫ ∞
0

t
q
2
−1(2m−1t)q/2 ‖Q2m−1t ∗ ∇Hf‖qLp(H(R),`2p(X)) dt

)1/q

(26)

=

(
∞∑
m=1

1

2(m−1)/2

)(∫ ∞
0

sq−1 ‖Qs ∗ ∇Hf‖qLp(H(R),`2p(X)) ds

)1/p

, (27)

where (26) uses Lemma 2.4, and (27) follows from the change of variable
s = 2m−1t in each of the summands of (26). �

Lemma 2.6 below is an analogue of a standard fact in Littlewood-
Paley theory: it is commonly stated for real-valued functions defined on
R, while we need a statement for Banach space-valued functions defined
on H(R). In the real-valued case this fact has several known proofs,
and while we do not know how to extend all of them to the vector-
valued setting, the argument below is nothing more than the obvious
modification of the corresponding proof in Stein’s book [Ste70].

Lemma 2.6. Fix p, q ∈ [1,∞) and let (X, ‖ · ‖X) be a Banach space.
Every smooth and compactly supported f : H(R)→ X satisfies

(∫ ∞
0

(∫
H(R)
‖f(hct)− f(h)‖pXdµ(h)

)q/p
dt

t1+q/2

)1/q

.

(∫ ∞
0

t
q
2
−1 ‖Qt ∗ f‖qLp(H(R),X) dt

)1/q

. (28)

Proof. For every (h, t) ∈ H(R)× (0,∞) write

f(hct)− f(h) = [f(hct)− Pt ∗ f(hct)]

+ [Pt ∗ f(hct)− Pt ∗ f(h)] + [Pt ∗ f(h)− f(h)]. (29)
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We proceed to bound each of the terms in the right hand side of (29)
separately. Firstly,(∫ ∞

0

(∫
H(R)
‖f(hct)− Pt ∗ f(hct)‖pXdµ(h)

)q/p
dt

t1+q/2

)1/q

=

(∫ ∞
0

(∫
H(R)

∥∥∥∥∫ t

0

Qs ∗ f(hct)ds

∥∥∥∥p
X

dµ(h)

)q/p
dt

t1+q/2

)1/q

(30)

6

(∫ ∞
0

(∫ t

0

‖Qs ∗ f‖Lp(H(R),X) ds

)q
dt

t1+q/2

)1/q

(31)

6 2

(∫ ∞
0

t
q
2
−1‖Qt ∗ f(x)‖qLp(H(R),X)dt

)1/q

, (32)

where for (30) recall that in (9) we defined Qt as the time derivative
of Pt, in (31) we used the triangle inequality in Lp(H(R), X) and the
fact that the Haar measure µ is right-invariant, and in (32) we used
Hardy’s inequality (see [Ste70, Sec. A.4]). The rightmost term in the
right hand side of (29) is bounded using the same argument, yielding
the following inequality.(∫ ∞

0

(∫
H(R)
‖Pt ∗ f(h)− f(h)‖pXdµ(h)

)q/p
dt

t1+q/2

)1/q

6 2

(∫ ∞
0

t
q
2
−1‖Qt ∗ f(x)‖qLp(H(R),X)dt

)1/q

. (33)

To bound the middle term in the right hand side of (29) recall that
by the semigroup property of the Poisson kernel, for every t ∈ (0,∞)
we have Pt = Pt/2 ∗ Pt/2. As we have done in the proof of Lemma 2.4,
differentiation of this identity with respect to t yields Qt = Pt/2 ∗Qt/2.
Consequently, recalling the definition of Rt in (10),

∂

∂t
Rt =

∂

∂x
Qt =

∂

∂x

(
Pt/2 ∗Qt/2

)
= Rt/2 ∗Qt/2. (34)

Observe that limt→∞Rt ∗ f = 0 in Lp(H(R), X). Indeed,

‖Rt ∗ f‖Lp(H(R),X) 6 ‖Rt‖L1(R) · ‖f‖Lp(H(R),X)
(13)
=

2

πt
· ‖f‖Lp(H(R),X).

Consequently,

Rt ∗ f = −
∫ ∞
t

∂

∂s
(Rs ∗ f)ds

(34)
= −

∫ ∞
t

Rs/2 ∗ (Qs/2 ∗ f)ds. (35)
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The middle term in the right hand side of (29) can therefore be rewrit-
ten as follows.

Pt ∗ f(hct)− Pt ∗ f(h) =

∫ t

0

Rt ∗ f(hcu)du

= −
∫ t

0

∫ ∞
t

Rs/2 ∗ (Qs/2 ∗ f)(hcu)dsdu. (36)

Observe that for every t ∈ (0,∞) we have(∫
H(R)

∥∥∥∥∫ t

0

∫ ∞
t

Rs/2 ∗ (Qs/2 ∗ f)(hcu)dsdu

∥∥∥∥p
X

dµ(h)

)1/p

6
∫ t

0

∫ ∞
t

(∫
H(R)

∥∥Rs/2 ∗ (Qs/2 ∗ f)(hcu)
∥∥p
X
dµ(h)

)1/p

dsdu (37)

= t

∫ ∞
t

∥∥Rs/2 ∗ (Qs/2 ∗ f)
∥∥
Lp(H(R),X)

ds, (38)

where (37) uses the triangle inequality in Lp(H(R), X) and (38) uses the
right-invariance of the Haar measure µ . By combining (36) and (38)
the middle term in the right hand side of (29) is bounded as follows.(∫ ∞

0

(∫
H(R)
‖Pt ∗ f(hct)− Pt ∗ f(x)‖pXdµ(h)

)q/p
dt

t1+q/2

)1/q

6

(∫ ∞
0

t
q
2
−1
(∫ ∞

t

∥∥Rs/2 ∗ (Qs/2 ∗ f)
∥∥
Lp(H(R),X)

ds

)q
dt

)1/q

6 2

(∫ ∞
0

t
3q
2
−1 ∥∥Rt/2 ∗ (Qt/2 ∗ f)

∥∥q
Lp(H(R),X)

dt

)1/q

, (39)

where (39) uses the second form of Hardy’s inequality (see [Ste70,
Sec. A.4]). By Young’s inequality, for every t ∈ (0,∞) we have

‖Rt/2 ∗Qt/2 ∗ f‖Lp(H(R),X) 6 ‖Rt/2‖L1(R) · ‖Qt/2 ∗ f‖Lp(H(R),X)

(13)
=

4

πt
· ‖Qt/2 ∗ f‖Lp(H(R),X). (40)

A substitution of (40) into (39) yields the estimate(∫ ∞
0

(∫
H(R)
‖Pt ∗ f(hct)− Pt ∗ f(h)‖pXdµ(h)

)q/p
dt

t1+q/2

)1/q

6
8
√

2

π

(∫ ∞
0

t
q
2
−1‖Qt ∗ f‖qLp(H(R),X)dt

)1/q

. (41)
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The desired bound (28) now follows by applying the triangle inequality
in Lq(t

−1−q/2dxdt, Lp(H(R), X)) to (29) while using (32), (33), (41). �

Proof of Proposition 2.2. Substitute Lemma 2.5 into Lemma 2.6. �

3. Proof of Theorem 1.1

Our goal here is to prove the following theorem, the case p = q of
which is Theorem 1.1.

Theorem 3.1. For every η ∈ (0, 1), q ∈ [2,∞) and p ∈ (1, q] there
exists K = K(η, p, q) ∈ (0,∞) with the following property. Suppose
that (X, ‖ · ‖X) is a Banach space satisfying δ(X,‖·‖X)(ε) > (ηε)q for
every ε ∈ (0, 1). Then for every n ∈ N and every f : H→ X we have n2∑

k=1

1

k1+q/2

(∑
x∈Bn

‖f(xck)− f(x)‖pX

)q/p
1/q

6 K

( ∑
x∈B21n

(
‖f(xa)− f(x)‖pX + ‖f(xb)− f(x)‖pX

))1/p

. (42)

Theorem 3.1 will be shown to follow from its continuous counter-
part, i.e., Theorem 2.1. This deduction resembles the corresponding
argument appearing in Section 7 of [ANT10], though there are some
crucial differences. Other than dealing with an inequality of a different
form, the main differences follow from the fact that [ANT10] argues
about a different notion of horizontal gradient, namely a coarse coun-
terpart of ∇H, and from the fact that [ANT10] uses a Euclidean version
of Kleiner’s local Poincaré inequality [Kle10], while we need a similar
statement for functions taking values in general Banach spaces.

3.1. A local Poincaré inequality on H. Lemma 3.2 below extends
the local Poincaré inequality of Kleiner [Kle10, Thm. 2.2], who proved
the same statement for real-valued functions and p = 2. The simple
argument below shows that the same result holds true for functions
taking value in a general metric space, a fact that will be useful for us
later. In [Kle10] the corresponding result is stated for arbitrary finitely
generated groups, and while we state it for H, the same argument works
mutatis mutandis in the full generality of [Kle10].
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Lemma 3.2. Fix p ∈ [1,∞) and n ∈ N. Let (M,dM) be a metric
space. For every f : H→M ,∑

x,y∈Bn

dM(f(x), f(y))p

. (2n)p+4
∑
x∈B3n

(
dM(f(xa), f(x))p + dM(f(xb), f(x))p

)
. (43)

Proof. For every z ∈ B2n choose s1(z), . . . , s2n(z) ∈ {a, b, a−1, b−1, eH}
such that z = s1(z) · · · s2n(z). For i ∈ {1, . . . , 2n} write wi(z) =
s1(z) · · · si(z) and set w0(z) = eH. By the triangle inequality and
Hölder’s inequality, for every x, y ∈ Bn we have

dM(f(x), f(y))p

6 (2n)p−1
2n−1∑
i=0

dM
(
f
(
xwi

(
x−1y

))
, f
(
xwi

(
x−1y

)
si+1

(
x−1y

)))p
.

Consequently,∑
x,y∈Bn

dM(f(x), f(y))p

6 (2n)p−1
∑
z∈B2n

2n−1∑
i=1

∑
x∈Bn

dM (f (xwi (z)) , f (xwi (z) si+1 (z)))p

= (2n)p−1
∑
z∈B2n

2n−1∑
i=0

∑
g∈Bnwi(z)

dM (f(g), f(gsi+1(z)))p

6 (2n)p−1 · |B2n| · 2n
∑
h∈B3n

(
dM(f(ha), f(h))p + dM(f(hb), f(h))p

)
.

Since |B2n| � n4, the desired inequality (51) follows. �

3.2. Localization of a discrete global inequality. Theorem 3.1 is
a local vertical versus horizontal Poincaré inequality in the sense that
it involves sums over balls in H. While this form of the inequality is
important for the deduction of lower bounds on bi-Lipschitz distor-
tion of balls in H, the natural discrete analogue of Theorem 2.1 is the
following global vertical versus horizontal Poincaré inequality on H.

Theorem 3.3. For every η ∈ (0,∞), q ∈ [2,∞) and p ∈ (1, q] there
exists K = K(η, p, q) ∈ (0,∞) with the following property. Suppose
that (X, ‖ · ‖X) is a Banach space satisfying δ(X,‖·‖X)(ε) > (ηε)q for
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every ε ∈ (0, 1). Then for every finitely supported f : H→ X we have ∞∑
k=1

1

k1+q/2

(∑
x∈H

‖f(xck)− f(x)‖pX

)q/p
1/q

6 K

(∑
x∈H

(
‖f(xa)− f(x)‖pX + ‖f(xb)− f(x)‖pX

))1/p

. (44)

Theorem 3.3 will be deduced from Theorem 2.1 via a partition of
unity argument. This is done is Section 3.3 below. We shall now
assume the validity of Theorem 3.3 and proceed, using Lemma 3.2, to
conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. The argument follows the proof of Claim 7.2
in [ANT10]. Fix n ∈ N and a finitely supported f : H→ X. By trans-
lating f we may assume that

∑
x∈B7n

f(x) = 0. Due to Lemma 3.2,
this implies that( ∑

x∈B7n

‖f(x)‖pX

)1/p

=

∑
x∈B7n

∥∥∥∥∥ 1

|B7n|
∑
y∈B7n

(f(x)− f(y))

∥∥∥∥∥
p

X

1/p

6

(
1

|B7n|
∑

x,y∈B7n

‖f(x)− f(y)‖pX

)1/p

. n

( ∑
x∈B21n

(
‖f(xa)− f(x)‖pX + ‖f(xb)− f(x)‖pX

))1/p

. (45)

Define a cutoff function ξ : H→ [0, 1] by

ξ(x)
def
=


1 x ∈ B5n,

6− dW (x,e)
n

x ∈ B6n rB5n,
0 x ∈ HrB6n,

and let φ
def
= ξf . Then φ is supported on B6n. Since ξ is 1

n
-Lipschitz

and takes values in [0, 1], for all s ∈ {a, b} and x ∈ H we have

‖φ(x)−φ(xs)‖X 6 |ξ(x)−ξ(xs)| ·‖f(x)‖X + |ξ(xs)| ·‖f(x)−f(xs)‖X

6
1

n
‖f(x)‖X + ‖f(x)− f(xs)‖X . (46)
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If k ∈ {1, . . . , n2} then dW (eH, c
k) 6 4n (see [Bla03]). Consequently,

for every x ∈ Bn we have xck ∈ B5n, and therefore φ(x) = f(x) and
φ(xck) = f(xck). Hence, n2∑

k=1

1

k1+q/2

(∑
x∈Bn

‖f(xck)− f(x)‖pX

)q/p
1/q

6

 ∞∑
k=1

1

k1+q/2

(∑
x∈H

‖φ(xck)− φ(x)‖pX

)q/p
1/q

. (47)

Moreover,(∑
x∈H

(
‖φ(xa)− φ(x)‖pX + ‖φ(xb)− φ(x)‖pX

))1/p

=

( ∑
x∈B7n

(
‖φ(xa)− φ(x)‖pX + ‖φ(xb)− φ(x)‖pX

))1/p

(48)

6
21/p

n

( ∑
x∈B7n

‖f(x)‖pX

)1/p

+

( ∑
x∈B7n

(
‖f(xa)− f(x)‖pX + ‖f(xb)− f(x)‖pX

))1/p

(49)

.

( ∑
x∈B21n

(
‖f(xa)− f(x)‖pX + ‖f(xb)− f(x)‖pX

))1/p

, (50)

where (48) holds true since φ is supported on B6n, (49) uses (46),
and (50) uses (45). The desired inequality (42) now follows from an
application of Theorem 3.3 to φ, combined with (47) and (50). �

3.3. Discretization of Theorem 2.1. Here we prove Theorem 3.3,
thus completing the proof of Theorem 3.1, and, as a special case, com-
pleting the proof of Theorem 1.1. The argument below is a variant of
the proof of Claim 7.3 in [ANT10].

We will use the following simple lemma, whose proof is similar to the
proof of Lemma 3.2. Below, a mapping f : H→M is said to be finitely
supported if there exists m0 ∈M such that |f−1(M r {m0})| <∞.
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Lemma 3.4. Fix p ∈ [1,∞) and n ∈ N. Let (M,dM) be a metric
space. For every finitely supported f : H→M ,∑

y∈H

∑
z∈Bn

dM(f(yz), f(y))p

. np+4
∑
x∈H

(
dM(f(xa), f(x))p + dM(f(xb), f(x))p

)
. (51)

Proof. For every z ∈ Bn choose s1(z), . . . , sn(z) ∈ {a, b, a−1, b−1, eH}
such that z = s1(z) · · · sn(z). Set w0(z) = eH and for i ∈ {1, . . . , n}
write wi(z) = s1(z) · · · si(z). By the triangle inequality and Hölder’s
inequality, for every y ∈ H we have

dM(f(yz), f(y))p 6 np−1
n−1∑
i=0

dM (f (ywi (z)) , f (ywi (z) si+1 (z)))p .

Consequently,∑
y∈H

∑
z∈Bn

dM(f(yz), f(y))p

6 np|Bn|
∑
x∈H

(
dM(f(xa), f(x))p + dM(f(xb), f(x))p

)
. �

Proof of Theorem 3.3. Since H is a co-compact lattice in H(R), there
exists a compactly supported smooth function χ : H(R)→ [0, 1] with

∀h ∈ H(R),
∑
x∈H

χx(h) = 1, (52)

where χx : H(R)→ X is given by χx(h) = χ(x−1h) for every x ∈ H and
h ∈ H(R). Let A ⊆ H(R) denote the support of χ. We may assume
without loss of generality that A−1 = A. Note that due to (52) we have⋃

x∈H

xA = H(R). (53)

Since A is compact, we may fix m ∈ N for which A ∩H ⊆ Bm.
Let f : H→ X be finitely supported. Define F : H(R)→ X by

F (h)
def
=
∑
x∈H

χx(h)f(x). (54)

Fix y ∈ H and h ∈ yA. Note that it follows from (52) that∑
x∈H

∇Hχx(h) = 0. (55)
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Observe that if x ∈ H satisfies ∇Hχx(h) 6= 0 then necessarily x−1h ∈ A.
Since A−1 = A, this implies that x ∈ hA ⊆ (yA)A ⊆ yB2m. Hence,

‖∇HF (h)‖`2p(X)

=

∥∥∥∥∥ ∑
x∈yB2m

(
∂aχx(h)(f(x)− f(y)), ∂bχx(h)(f(x)− f(y))

)∥∥∥∥∥
`2p(X)

6

(
max
h∈A
‖∇Hχ(h)‖`2p

) ∑
z∈B2m

‖f(yz)− f(y)‖X

. |B2m|1−1/p
( ∑
z∈B2m

‖f(yz)− f(y)‖pX

)1/p

. (56)

By integrating (56) over yA, we have∫
yA

‖∇HF (h)‖p`2p(X) dµ(h) .
∑
z∈B2m

‖f(yz)− f(y)‖pX . (57)

By summing (57) over y ∈ H and recalling (53), we conclude that

(∫
H(R)
‖∇HF (h)‖p`2p(X) dµ(h)

)1/p

.

(∑
y∈H

∑
z∈B2m

‖f(yz)− f(y)‖pX

)1/p

.

(∑
x∈H

(
‖f(xa)− f(x)‖pX + ‖f(xb)− f(x)‖pX

))1/p

, (58)

where the final step of (58) uses Lemma 3.4.
Next, let U ⊆ H(R) be a bounded open set such that eH ∈ U yet

U ∩ (xU) = ∅ for all x ∈ H r {eH}. Since c[0,1] = {cs : s ∈ [0, 1]}
and U are bounded subsets of H(R), we can choose r ∈ N such that
(Uc[0,1]A) ∩H ⊆ Br. Fix x ∈ H and h ∈ xU . Suppose that k ∈ N and
t ∈ [k, k + 1]. Recalling (52) and (54) we have

F (hct)− f(xck) =
∑
w∈H

χw(hct)(f(w)− f(xck)). (59)

Observe that if w ∈ H satisfies χw(hct) 6= 0 then hct ∈ A, and since
A = A−1 and c belongs to the center of H(R), this inclusion implies
that w ∈ hctA ⊆ xckUc[0,1]A ⊆ xckBr. (59) therefore implies that

‖F (hct)− f(xck)‖pX .
∑
z∈Br

‖f(xckz)− f(xck)‖pX . (60)
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Similar (simpler) reasoning shows that also

‖F (h)− f(x)‖pX .
∑
z∈Br

‖f(xz)− f(x)‖pX . (61)

It follows from (60) and (61) that

‖f(xck)− f(x)‖pX . ‖F (hct)− F (h)‖pX
+
∑
z∈Br

(
‖f(xckz)− f(xck)‖pX + ‖f(xz)− f(x)‖pX

)
. (62)

Integration of (62) over h ∈ xU therefore yields the estimate

‖f(xck)− f(x)‖pX .
∫
xU

‖F (hct)− F (h)‖pXdµ(h)

+
∑
z∈Br

(
‖f(xckz)− f(xck)‖pX + ‖f(xz)− f(x)‖pX

)
. (63)

Since the sets {xU}x∈H are pairwise disjoint, summation of (63) over
x ∈ H, combined with an application of Lemma 3.4, shows that(∑

x∈H

‖f(xck)− f(x)‖pX

)1/p

.

(∫
H(R)
‖F (hct)− F (h)‖pXdµ(h)

)1/p

+

(∑
x∈H

(
‖f(xa)− f(x)‖pX + ‖f(xb)− f(x)‖pX

))1/p

. (64)

Integration of (64) over t ∈ [k, k + 1] yields

1

k1+q/2

(∑
x∈H

‖f(xck)− f(x)‖pX

)q/p

6 Cq

∫ k+1

k

(∫
H(R)
‖F (hct)− F (h)‖pXdµ(h)

)q/p
dt

t1+q/2

+
Cq

k1+q/2

(∑
x∈H

(
‖f(xa)− f(x)‖pX + ‖f(xb)− f(x)‖pX

))q/p

, (65)

where C ∈ (0,∞) is a universal constant. We may now sum (65) over
k ∈ N to get the bound
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 ∞∑
k=1

1

k1+q/2

(∑
x∈H

‖f(xck)− f(x)‖pX

)q/p
1/q

.

(∫ ∞
0

(∫
H(R)
‖F (hct)− F (h)‖pXdµ(h)

)q/p
dt

t1+q/2

)1/q

+

(∑
x∈H

(
‖f(xa)− f(x)‖pX + ‖f(xb)− f(x)‖pX

))1/p

. (66)

The desired inequality (44) follows from an application of Theorem 2.1
to F , and substituting (58) and (66) into the resulting inequality. �

4. Vertical perimeter versus horizontal perimeter

The case X = R and q = 2 of Theorem 2.1 shows that for every
p ∈ (1, 2] and every smooth and compactly supported f : H(R)→ R,(∫ ∞

0

(∫
H(R)
|f(hct)− f(h)|pdµ(h)

)2/p
dt

t2

)1/2

.p

(∫
H(R)
‖∇Hf(h)‖p`2p dµ(h)

)1/p

. (67)

The implied constant in (67) that follows from our proof of Theorem 2.1
tends to∞ as p→ 1. However, we ask whether the endpoint case p = 1
of (67) does nevertheless hold true.

Question 4.1. Is it true that every smooth and compactly supported
f : H(R)→ R satisfies(∫ ∞

0

(∫
H(R)
|f(hct)− f(h)|dµ(h)

)2
dt

t2

)1/2

.
∫
H(R)
‖∇Hf(h)‖`21 dµ(h). (68)

A standard application of the co-area formula shows that it suffices
to prove (68) when f is an indicator of a measurable set A ⊆ H(R).
For such a choice of f the right hand side of (68) should be inter-
preted as the horizontal perimeter of A, denoted PER(A). Rather than
defining the horizontal perimeter PER(A) here, we refer to [Amb01]
and [CK10a, Sec. 2] for a detailed discussion of this notion.
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Definition 4.2 (Vertical perimeter at scale t). Let A ⊆ H(R) be mea-
surable and t ∈ (0,∞). Recalling that µ is the Haar measure on H(R)
(equivalently µ is the Lebesgue measure on R3), define the vertical
perimeter of A at scale t, denoted vt(A), to be the quantity

vt(A)
def
= µ

({
h ∈ A : hct /∈ A or hc−t /∈ A

})
. (69)

Thus vt(A) measures the the size of those points of A from which
a vertical movement of ±t lands outside A. Using this terminology,
we have the following reformulation of Question 4.1 in terms of an
isoperimetric-type inequality.

Question 4.3. Is it true that for every measurable A ⊆ H(R) one has∫ ∞
0

vt(A)2

t2
dt . PER(A)2. (70)

While we believe that Question 4.3 has a positive answer, at present
we do not have sufficient evidence that would justify formulating this
assertion as a conjecture. However, there is a weaker coarse variant of
Question 4.3 for which there is significant partial positive evidence that
will be published elsewhere; this evidence originates from ongoing work
(including numerical experiments and proofs of nontrivial special cases)
on our question by Artem Kozhevnikov and Pierre Pansu (personal
communication). We shall now formulate this weaker conjecture, and
proceed to explain an application of it to theoretical computer science.

Definition 4.4 (Coarse total vertical perimeter at resolution ε). Let
A ⊆ H(R) be measurable and ε ∈ (0, 1). Define the coarse total vertical
perimeter of A at resolution ε by

V (ε)(A)
def
=

∫ 1

ε

vt(A)

t3/2
dt. (71)

The following isoperimetric-type conjecture relates the coarse total
vertical perimeter of A at resolution ε with its horizontal perimeter.

Conjecture 4.5. For every measurable A ⊆ H(R) and every ε ∈ (0, 1/2),

V (ε)(A) .
√

log(1/ε) · PER(A). (72)

Note that if (70) holds true then by the Cauchy–Schwarz inequality,

V (ε)(A)
(71)
=

∫ 1

ε

1√
t
· vt(A)

t
dt

6

√∫ 1

ε

dt

t
·

√∫ 1

ε

vt(A)2

t2
dt

(70)

.
√

log(1/ε) · PER(A). (73)
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This shows that a positive answer to Question 4.3 would imply a pos-
itive resolution of Conjecture 4.5.

By the co-area formula, Conjecture 4.5 has the following equiva-
lent functional version: for every smooth and compactly supported
f : H(R)→ R and every ε ∈ (0, 1/2),∫ 1

ε

∫
H(R)

|f(hct)− f(h)|
t3/2

dµ(h)dt .
√

log(1/ε)

∫
H(R)
‖∇Hf(h)‖`21dµ(h).

By re-scaling, this is equivalent to requiring that for every R ∈ (1,∞),∫ R

1

∫
H(R)

|f(hct)− f(h)|
t3/2

dµ(h)dt

.
√

logR

∫
H(R)
‖∇Hf(h)‖`21dµ(h). (74)

Arguing as in Section 3, one sees that (74) implies that for every integer
n > 2 and every f : H→ R we have

n2∑
k=1

∑
x∈Bn

|f(xck)− f(x)|
k3/2

.
√

log n
∑

x∈B21n

(
|f(xa)− f(x)|+ |f(xb)− f(x)|

)
. (75)

By summing (75) over coordinates we conclude that the conjectural
inequality (75) implies that every f : H→ `1 satisfies

n2∑
k=1

∑
x∈Bn

‖f(xck)− f(x)‖1
k3/2

.
√

log n
∑

x∈B21n

(
‖f(xa)− f(x)‖1 + ‖f(xb)− f(x)‖1

)
. (76)

The same computation as in (2) shows that if (76) does indeed hold
true, then c1(Bn, dW ) &

√
log n, and therefore, as explained in the

introduction, in fact c1(Bn, dW ) �
√

log n. We state this conclusion as
a separate conjecture.

Conjecture 4.6. For every integer n > 2 we have c1(Bn, dW ) �
√

log n.

To summarize the above reasoning, a positive answer to Question 4.1
(or equivalently Question 4.3) implies the positive resolution of Conjec-
ture 4.5, which in turn implies the positive resolution of Conjecture 4.6.

We recall that in [CKN11] it was shown that c1(Bn, dW ) & (log n)κ

for some universal constant κ > 0. While the proof of this result
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in [CKN11] is constructive, to the best of our knowledge there was no
serious attempt to use that proof in order to give a good estimate on
the value of κ, since it seems very unlikely that the methods of [CKN11]
can yield the sharp bound κ > 1

2
. Suppose that for some p ∈ [1,∞) the

following variant of (70) holds true for every measurable A ⊆ H(R).(∫ ∞
0

vt(A)p

t1+p/2
dt

)1/p

. PER(A). (77)

Arguing as in (73), an application of Hölder’s inequality would yield the

validity of (72) with the term
√

log(1/ε) replaced by (log(1/ε))1−1/p.
Reasoning identically to the discussion preceding Conjecture 4.6, it
would follow that c1(Bn, dW ) & (log n)1/p. Thus, proving an inequality
such as (77) would yield a new proof of the lower bound on c1(Bn, dW )
of [CKN11]. It is straightforward to check that (77) holds true when
p =∞, and it would be interesting to investigate whether the method
of [CKN11] can potentially lead to a proof of (77) for some finite p.

Due to the fact that our conjectures lead to an asymptotically sharp
lower bound on the `1 distortion of balls in H, it follows that the small-
est possible p ∈ [1,∞) for which (77) can hold true is p = 2. Cor-
respondingly, (72) cannot be improved. The three known embeddings
of (Bn, dW ) into `1 with distortion O(

√
log n) that were mentioned in

the introduction (first embed into `2, and then use the fact that fi-
nite subsets of `2 embed isometrically into `1) lead to examples of sets
A ⊆ H(R) for which (72) is sharp. A different explicit example of a set
for which (72) is sharp was found by Robert Young (personal commu-
nication). This illuminating example will be published elsewhere.

4.1. Algorithmic implications. We shall now indicate an important
consequence of the conjectures presented here to theoretical computer
science. This topic is discussed at length in e.g. [CKN11, Nao10], so
we will be brief here, and in particular we will mention only the best
known results without describing the historical development.

In the Sparsest Cut problem one is given as input two symmetric
functions C,D : {1, . . . , n} × {1, . . . , n} → [0,∞) and the goal is to
compute (or estimate) in polynomial time the quantity

Φ∗(C,D)
def
= min
∅6=S({1,...,n}

∑n
i=1

∑n
j=1C(i, j) |1S(i)− 1S(j)|∑n

i=1

∑n
j=1D(i, j) |1S(i)− 1S(j)|

.

This versatile optimization problem is of central algorithmic impor-
tance; see e.g. [Shm97] for examples of its applicability.



VERTICAL VERSUS HORIZONTAL POINCARÉ INEQUALITIES 27

The best known approximation algorithm for the Sparsest Cut prob-
lem was proposed by Goemans and Linial [Goe97, Lin02]. In [ALN08]
it is proved that the Goemans-Linial algorithm outputs a number which
is guaranteed to be within a factor of O(

√
log n log log n) of Φ∗(C,D).

Goemans [Goe97] and Linial [Lin02] (see also [Mat02, pages 379–380])
actually conjectured that their algorithm outputs a number which is
within a factor of O(1) of Φ∗(C,D). The Goemans-Linial conjec-
ture was disproved by Khot and Vishnoi [KV05], who proved that the
Goemans-Linial algorithm makes an error of at least a constant power
of log log n on some inputs. A link of the Sparsest Cut problem to
the Heisenberg group was found in [LN06], where the Goemans-Linial
algorithm was shown to make an error of at least a constant multiple
of c1(Bn, dW ) on some inputs. The lower bound c1(Bn, dW ) & (log n)κ

of [CKN11] consequently established that the Goemans-Linial algo-
rithm makes an error of at least a constant multiple of (log n)κ on
some inputs. An affirmative solution of Conjecture 4.6 would improve
this lower bound to a constant multiple of

√
log n, thus resolving (up

to iterated logarithms) the problem of understanding the asymptotic
performance of the Goemans-Linial algorithm.
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